
Package: matchingMarkets (via r-universe)
September 7, 2024

Version 1.0-2

Depends R (>= 3.0.2)

Imports Rcpp (>= 0.12.12), RcppProgress (>= 0.2), rJava, lpSolve,
lattice, partitions, parallel, stats, utils

SystemRequirements Java, C++11

LinkingTo Rcpp, RcppProgress, RcppArmadillo

Suggests knitr, ggplot2, grDevices, graphics

VignetteBuilder knitr

Title Analysis of Stable Matchings

Author Thilo Klein [aut, cre], Robert Aue [ctb], Sven Giegerich [ctb],
Alexander Sauer [ctb]

Maintainer Thilo Klein <thilo@klein.uk>

Description Implements structural estimators to correct for the sample
selection bias from observed outcomes in matching markets. This
includes one-sided matching of agents into groups as well as
two-sided matching of students to schools. The package also
contains algorithms to find stable matchings in the three most
common matching problems: the stable roommates problem, the
college admissions problem, and the house allocation problem.

URL http://matchingMarkets.org, http://klein.uk

BugReports https://github.com/thiloklein/matchingMarkets/issues

License GPL (>= 2)

RoxygenNote 7.0.2

Encoding UTF-8

Repository https://thiloklein.r-universe.dev

RemoteUrl https://github.com/thiloklein/matchingmarkets

RemoteRef HEAD

RemoteSha cc95ab2842614da58b178455f82efe48d742afd7

1

http://matchingMarkets.org
http://klein.uk
https://github.com/thiloklein/matchingMarkets/issues


2 matchingMarkets-package

Contents
matchingMarkets-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
baac00 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
hri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
hri2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
iaa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
khb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
klein15a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
klein15b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
mce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
plp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
predict.stabit2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
rsd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
sri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
stabchk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
stabit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
stabit2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
stabsim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
stabsim2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
ttc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
ttc2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
ttcc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
xlogit.data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Index 44

matchingMarkets-package

An R package for the analysis of stable matchings.

Description

The matchingMarkets package contains R, C++ and Java code for stable matching algorithms and
the estimation of structural models that correct for the sample selection bias of observed outcomes
in matching markets.

Matching is concerned with who transacts with whom, and how. For example, who works at which
job, which students go to which school, who forms a workgroup with whom, and so on.

The empirical analysis of matching markets is naturally subject to sample selection problems. If
agents match assortatively on characteristics unobserved to the analyst but correlated with both the
exogenous variable and the outcome of interest, regression estimates will generally be biased.

The matchingMarkets package comprises

1. Bayes estimators. The estimators implemented in function stabit and stabit2 correct for
the selection bias from endogenous matching.
The current package version provides solutions for two commonly observed matching pro-
cesses: (i) the group formation problem with fixed group sizes and (ii) the college admissions
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problem. These processes determine which matches are observed – and which are not – and
this is a sample selection problem.

2. Post-estimation tools. Setting mfx=TRUE in the summary function computes marginal effects
from coefficients in binary outcome and selection equations and khb implements the Karlson-
Holm-Breen test for confounding due to sample selection.

3. Design matrix generation. The estimators are based on independent variables for all feasible,
i.e., observed and counterfactual, matches in the market. Generating the characteristics of all
feasible matches from individual-level data is a combinatorial problem. The package returns
design matrices based on pre-specified transformations to generate counterfactual matches.

4. Algorithms. The package also contains matching algorithms that can be used to simulated
matching data: hri: A constraint model (Posser, 2014) for the stable marriage and college
admissions problem, a.k.a. hospital/residents problem (see Gale and Shapley, 1962). sri: A
constraint model for the stable roommates problem (see Gusfield and Irving, 1989). ttc: The
top-trading-cycles algorithm for the housing market problem. These can be used to obtain
stable matchings from simulated or real preference data (see Shapley and Scarf, 1974).

5. Data. In addition to the baac00 dataset from borrowing groups in Thailands largest agricul-
tural lending program, the package provides functions stabsim and stabsim2 to simulate
one’s own data from one-sided and two-sided matching markets.

Frequently Asked Questions

• Why can I not use the classic Heckman correction?
Estimators such as the Heckman (1979) correction (in package sampleSelection) or dou-
ble selection models are inappropriate for this class of selection problems. To see this, note
that a simple first stage discrete choice model assumes that an observed match reveals match
partners’ preferences over each other. In a matching market, however, agents can only choose
from the set of partners who would be willing to form a match with them and we do not
observe the players’ relevant choice sets.

• Do I need an instrumental variable to estimate the model?
Short answer: No. Long answer: The characteristics of other agents in the market serve as
the source of exogenous variation necessary to identify the model. The identifying exclusion
restriction is that characteristics of all agents in the market affect the matching, i.e., who
matches with whom, but it is only the characteristics of the match partners that affect the
outcome of a particular match once it is formed. No additional instruments are required for
identification (Sorensen, 2007).

• What are the main assumptions underlying the estimator?
The approach has certain limitations rooted in its restrictive economic assumptions.

1. The matching models are complete information models. That is, agents are assumed to
have a complete knowledge of the qualities of other market participants.

2. The models are static equilibrium models. This implies that (i) the observed matching
must be an equilibrium, i.e., no two agents would prefer to leave their current partners
in order to form a new match (definition of pairwise stability), and (ii) the equilibrium
must be unique for the likelihood function of the model to be well defined (Bresnahan
and Reiss, 1991).

3. Uniqueness results can be obtained in two ways. First, as is common in the industrial
organization literature, by imposing suitable preference restrictions. A suitable restriction

http://en.wikipedia.org/wiki/Stable_marriage_problem
http://en.wikipedia.org/wiki/Hospital_resident
http://en.wikipedia.org/wiki/Hospital_resident
http://en.wikipedia.org/wiki/Stable_roommates_problem
https://en.wikipedia.org/wiki/Top_trading_cycle
https://cran.r-project.org/package=sampleSelection


4 matchingMarkets-package

on agents’ preferences that guarantees a unique equilibrium is alignment (Pycia, 2012).
In a group formation model, (pairwise) preference alignment states that any two agents
who belong to the same groups must prefer the same group over the other. Second,
by choosing a market assigment based on matching algorithms that produce a unique
stable matching, such as the well-studied Gale and Shapley (1962) deferred acceptance
algorithm.

4. Finally, the models assume bivariate normality of the errors in selection and outcome
equation. If that assumption fails, the estimator is generally inconsistent and can provide
misleading inference in small samples.

How to cite this package

Whenever using this package, please cite as

Klein, T. (2018). matchingMarkets: Structural Estimator and Algorithms for the Analysis of Stable
Matchings. R package version 1.0-1.

Author(s)

Thilo Klein

References

Bresnahan, T. and Reiss, P. (1991). Empirical models of discrete games. Journal of Econometrics,
48(1-2):57–81.
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MIT Press.

Heckman, J. (1979). Sample selection bias as a specification error. Econometrica, 47(1):153–161.
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See Also
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baac00 Townsend Thai Project BAAC Annual Resurvey, 2000

Description

The baac00 data frame contains data of 292 borrowers from Thailand’s largest agricultural lending
program. These data are collected as part of the Townsend Thai Project Bank for Agriculture and
Agricultural Cooperatives (BAAC) Annual Resurvey (Townsend, 2000). The 292 borrowers are
nested within 68 groups and 39 markets. This nestedness makes the dataset particularly relevant for
matching applications. A more complete discussion of the data is found in Ahlin (2009), Section 3,
and Klein (2015a).

Usage

data(baac00)

Format

This data frame contains the following columns:

g.id group identifier.

m.id market identifier.

R repayment outcome: BAAC never raised interest rate as a penalty for late repayment.

pi success probability: measure of group members’ project success probability.

wst worst year: indicator of economically worst year. 1:last year; 2:year before last year; 101-
168:neither.

loan_size loan size: average loan size borrowed by the group.

loan_size2 loan size squared.

lngroup_agei log group age: log of number of years group has existed.

Source

Townsend, R. (2000). Townsend Thai Project Bank for Agriculture and Agricultural Cooperatives
(BAAC) Annual Resurvey, 2000. Available at http://hdl.handle.net/1902.1/12057, Murray
Research Archive.

References

Ahlin, C. (2009). Matching for credit: Risk and diversification in Thai microcredit groups. Working
Paper 251, Bureau for Research and Economic Analysis of Development.

Klein, T. (2015a). Does Anti-Diversification Pay? A One-Sided Matching Model of Microcredit.
Cambridge Working Papers in Economics, #1521.

http://hdl.handle.net/1902.1/12057
https://ideas.repec.org/p/cam/camdae/1521.html
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hri All stable matchings in the hospital/residents problem with incomplete
lists

Description

Finds all stable matchings in either the hospital/residents problem (a.k.a. college admissions prob-
lem) or the related stable marriage problem. Dependent on the problem, the results comprise the
student and college-optimal or the men and women-optimal matchings. The implementation allows
for incomplete preference lists (some agents find certain agents unacceptable) and unbalanced in-
stances (unequal number of agents on both sides). The function uses the Prosser (2014) constraint
encoding based on either given or randomly generated preferences.

Usage

hri(
nStudents = ncol(s.prefs),
nColleges = ncol(c.prefs),
nSlots = rep(1, nColleges),
s.prefs = NULL,
c.prefs = NULL,
s.range = NULL,
c.range = NULL,
randomization = NULL,
seed = NULL,
check_consistency = TRUE,
...

)

Arguments

nStudents integer indicating the number of students (in the college admissions problem) or
men (in the stable marriage problem) in the market. Defaults to ncol(s.prefs).

nColleges integer indicating the number of colleges (in the college admissions problem) or
women (in the stable marriage problem) in the market. Defaults to ncol(c.prefs).

nSlots vector of length nColleges indicating the number of places (i.e. quota) of each
college. Defaults to rep(1,nColleges) for the marriage problem.

s.prefs matrix of dimension nColleges x nStudents with the jth column containing
student j’s ranking over colleges in decreasing order of preference (i.e. most
preferred first).

c.prefs matrix of dimension nStudents x nColleges with the ith column containing
college i’s ranking over students in decreasing order of preference (i.e. most
preferred first).

s.range range of two intergers s.range = c(s.min, s.max), where s.min < s.max. Pro-
duces incomplete preference lists with the length of each student’s list randomly
sampled from the range [s.min, s.max]. Note: interval is only correct if either
c.range or s.range is used.

http://en.wikipedia.org/wiki/Hospital_resident
http://en.wikipedia.org/wiki/Stable_matching
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c.range range of two intergers c.range = c(c.min, c.max), where c.min < c.max. Pro-
duces incomplete preference lists with the length of each college’s list randomly
sampled from the range [c.min, c.max]. Note: interval is only correct if either
c.range or s.range is used.

randomization determines at which level random lottery numbers for student priorities are
drawn. The default is randomization = "multiple", where a student’s pri-
ority is determined by a separate lottery at each college (i.e. local tie-breaking).
For the second variant, randomization = "single", a single lottery number
determines a student’s priority at all colleges (i.e. global tie breaking).

seed integer setting the state for random number generation.
check_consistency

Performs consicentcy checks (Checks if there are columns in the preference
matrices that only contains zeros and drops them and checks the matrixes for
consistencies if they are given by characters). Defaults to TRUE but changing it
to FALSE might reduce the running-time for large problems.

... .

Value

hri returns a list of the following elements.

s.prefs.smi student-side preference matrix for the stable marriage problem with incomplete
lists (SMI).

c.prefs.smi college-side preference matrix for the stable marriage problem with incomplete
lists (SMI).

s.prefs.hri student-side preference matrix for the college admissions problem (a.k.a. hospi-
tal/residents problem) with incomplete lists (HRI).

c.prefs.hri college-side preference matrix for the college admissions problem (a.k.a. hospi-
tal/residents problem) with incomplete lists (HRI).

matchings edgelist of matched students and colleges, inculding the number of the match
(matching) and two variables that indicate the student-optimal match (sOptimal)
and college-optimal match (cOptimal)

.

Minimum required arguments

hri requires the following combination of arguments, subject to the matching problem.

nStudents, nColleges Marriage problem with random preferences.

s.prefs, c.prefs Marriage problem with given preferences.

nStudents, nSlots College admissions problem with random preferences.

s.prefs, c.prefs, nSlots College admissions problem with given preferences.

Author(s)

Thilo Klein
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References

Gale, D. and L.S. Shapley (1962). College admissions and the stability of marriage. The American
Mathematical Monthly, 69(1):9–15.

Morizumi, Y., T. Hayashi and Y. Ishida (2011). A network visualization of stable matching in the
stable marriage problem. Artificial Life Robotics, 16:40–43.

Prosser, P. (2014). Stable Roommates and Constraint Programming. Lecture Notes in Computer
Science, CPAIOR 2014 Edition. Springer International Publishing, 8451: 15–28.

Examples

## Not run:
## -----------------------
## --- Marriage problem

## 7 men, 6 women, random preferences:
hri(nStudents=7, nColleges=6, seed=4)

## 3 men, 2 women, given preferences:
s.prefs <- matrix(c(1,2, 1,2, 1,2), 2,3)
c.prefs <- matrix(c(1,2,3, 1,2,3), 3,2)
hri(s.prefs=s.prefs, c.prefs=c.prefs)

## 3 men, 2 women, given preferences:
s.prefs <- matrix(c("x","y", "x","y", "x","y"), 2,3)
colnames(s.prefs) <- c("A","B","C")
c.prefs <- matrix(c("A","B","C", "A","B","C"), 3,2)
colnames(c.prefs) <- c("x","y")
hri(s.prefs=s.prefs, c.prefs=c.prefs)

## --------------------------------
## --- College admission problem

## 7 students, 2 colleges with 3 slots each, random preferences:
hri(nStudents=7, nSlots=c(3,3), seed=21)

## 7 students, 2 colleges with 3 slots each, given preferences:
s.prefs <- matrix(c(1,2, 1,2, 1,NA, 1,2, 1,2, 1,2, 1,2), 2,7)
c.prefs <- matrix(c(1,2,3,4,5,6,7, 1,2,3,4,5,NA,NA), 7,2)
hri(s.prefs=s.prefs, c.prefs=c.prefs, nSlots=c(3,3))

## 7 students, 2 colleges with 3 slots each, given preferences:
s.prefs <- matrix(c("x","y", "x","y", "x",NA, "x","y",

"x","y", "x","y", "x","y"), 2,7)
colnames(s.prefs) <- c("A","B","C","D","E","F","G")
c.prefs <- matrix(c("A","B","C","D","E","F","G",

"A","B","C","D","E",NA,NA), 7,2)
colnames(c.prefs) <- c("x","y")
hri(s.prefs=s.prefs, c.prefs=c.prefs, nSlots=c(3,3))

## 7 students, 3 colleges with 3 slots each, incomplete preferences:
hri(nStudents=7, nSlots=c(3,3,3), seed=21, s.range=c(1,3))
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s.prefs <- matrix(c('S1', 'S2', NA,
'S3', 'S1', NA,
'S1', NA, NA,
NA, NA,NA,

'S2', 'S1', 'S5'),
nrow = 3, ncol = 5)

# Note that we explicitly allow for the existence of entries refering to colleges
# that do not exist. A warning is generated and the entry is ignored.
colnames(s.prefs) <- c('A', 'B', 'C', 'D', 'E')
c.prefs <- matrix(c('B', 'C','D', 'A',

'C', 'D', NA, NA,
'D', 'B', 'A', 'E'),

nrow = 4, ncol = 3)
colnames(c.prefs) <- c('S1', 'S2', 'S3')
hri(s.prefs=s.prefs, c.prefs=c.prefs, nSlots=c(3,3,3), check_consistency = TRUE)

## --------------------
## --- Summary plots

## 200 students, 200 colleges with 1 slot each
res <- hri(nStudents=200, nColleges=200, seed=12)
plot(res)
plot(res, energy=TRUE)

## End(Not run)

hri2 Resident-optimal matching in the hospital/residents problem with cou-
ples

Description

Implements the Roth Peranson matching algorithm for the hospital/residents problem with couples
as described in Roth and Peranson (1999). The function is based on an adoption of Bacchus (2018).

Usage

hri2(
nStudents = ncol(s.prefs),
nColleges = ncol(c.prefs),
nSlots = rep(1, nColleges),
nCouples = ncol(co.prefs),
s.prefs = NULL,
c.prefs = NULL,
co.prefs = NULL,
randomization = "multiple",
seed = NULL,
check_consistency = TRUE,
...

)

https://en.wikipedia.org/wiki/National_Resident_Matching_Program
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Arguments

nStudents integer indicating the number of students (in the college admissions problem) or
men (in the stable marriage problem) in the market. Defaults to ncol(s.prefs).

nColleges integer indicating the number of colleges (in the college admissions problem) or
women (in the stable marriage problem) in the market. Defaults to ncol(c.prefs).

nSlots vector of length nColleges indicating the number of places (i.e. quota) of each
college. Defaults to rep(1,nColleges) for the marriage problem.

nCouples integer indicating the number of couples (in the college admissions problem) or
men (in the stable marriage problem) in the market. Defaults to ncol(co.prefs)

s.prefs matrix of dimension nColleges x nStudents with the jth column containing
student j’s ranking over colleges in decreasing order of preference (i.e. most
preferred first).

c.prefs matrix of dimension nStudents x nColleges with the ith column containing
college i’s ranking over students in decreasing order of preference (i.e. most
preferred first).

co.prefs matrix of dimension 4 x nCouplesPrefs in long format with the 1th and 2th
columns containing student couple id’s; 3th and 4th is a 2-tuple ranking over
college preference for the couple (coupleStudent1.pref, coupleStudent2.pref) in
decreasing order of preference by rows (i.e. most preferred first).

randomization determines at which level and in which order random lottery numbers for student
priorities are drawn. The default is randomization = "multiple", where a stu-
dent’s priority is determined by a separate lottery at each college (i.e. local tie-
breaking). For the second variant, randomization = "single", a single lottery
number determines a student’s priority at all colleges (i.e. global tie breaking).
A third variant is common in the context of course allocation, where a "couple"
represents a student who submits a preference ranking over single courses (first
course) and combinations of courses (first and second course). Here, the option
randomization = "single-course-first" gives applications for a student’s
single courses strictly higher priority than for course combinations. This en-
sures the fairness criterion that a student is only assigned a second course after
single course applications of all students have been considered.

seed integer setting the state for random number generation.

check_consistency

Performs additional consicentcy checks if the preference matrices are given by
characters. Defaults to FALSE. Set to FALSE to reduce run-time.

... .

Value

hri2 returns a list of the following elements:

matchings List of matched students and colleges.

summary Detailed report of the matching result, including futher information on ranks.
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Minimum required arguments

hri2 requires the following combination of arguments, subject to the matching problem.

nStudents, nColleges Residence hospital problem without couples and random preferences

nStudents, nColleges, nCouples, nSlots Residence hospital problem with couples and ran-
dom preferences.

s.prefs, c.prefs, co.prefs, nSlots Residence hospital problem with couples and given pref-
erences.

Author(s)

Sven Giegerich, Thilo Klein

References

Bacchus, F. (2018). Stable matching suite. GitHub repository.

Gale, D. and L.S. Shapley (1962). College admissions and the stability of marriage. The American
Mathematical Monthly, 69(1):9–15.

Roth, A. E., & Peranson, E. (1999). The redesign of the matching market for American physicians:
Some engineering aspects of economic design. American economic review, 89(4), 748-780.

Kojima, F., Pathak, P. A., & Roth, A. E. (2013). Matching with couples: Stability and incentives in
large markets. The Quarterly Journal of Economics, 128(4), 1585-1632.

Examples

## Not run:
## Example with given preferences
(s.prefs <- matrix(c(4,2,3,5, 2,1,3,NA, 1,2,3,4), 4,3))
(c.prefs <- matrix(rep(1:5,5), 5,5))
(co.prefs <- matrix(c(rep(4,3), rep(5,3), 3,3,NA, 3,NA,3), 3,4))
res <- hri2(s.prefs=s.prefs, c.prefs=c.prefs, co.prefs=co.prefs, nSlots=rep(1,5))
res$matchings
# summary(res)

## Example with random preferences
nStudents <- 50
nColleges <- 30
nCouples <- 4
nSlots <- sample(1:nStudents, nColleges)
res <- hri2(nStudents=nStudents, nColleges=nColleges, nCouples=nCouples, nSlots=nSlots)
res$matchings
# summary(res)

## Example with characters in the preferences matrices
s.prefs <- matrix(c("Micro1", NA, NA,

"Micro2", "Micro1", "Macro",
"Macro",NA ,NA),
ncol = 3)

colnames(s.prefs) <- c('Lea', 'Mia', 'Kai')
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c.prefs <- matrix(c("Niklas", "Kai", "Mia", "Anna",
"Lea", "Kai", "Anna",NA,
"Kai", "Mia", "Lea",NA),
ncol = 3)

colnames(c.prefs) <- c('Micro1', 'Micro2', 'Macro')
col1 <- c(rep("Niklas",4),rep("Anna",5))
col2 <- c(rep("Jan",4),rep("Lisa",5))
col3 <- c("Micro1","Macro","Micro1",NA,"Macro",

NA,"Micro2","Micro2","Macro")
col4 <- c("Micro2","Micro1",NA,"Macro","Macro",

"Micro1","Micro2","Macro",NA)
co.prefs <- matrix(c(col1,col2,col3,col4), ncol = 4)
res <- hri2(s.prefs=s.prefs, c.prefs=c.prefs, co.prefs=co.prefs,

nSlots=c(2,1,1))
res$matching

## Example if students are allowed to apply and be accepted by two courses
col12 <- c(rep(c(rep("Niklas",4),rep("Anna",2)),2))
col3 <- c("Micro1","Macro","Micro1","Macro","Macro","Macro")
col4 <- c("Micro2","Micro1",NA,NA,"Micro1","Micro2")
co.prefs <- matrix(c(col12,col3,col4), ncol = 4)
res <- hri2(s.prefs=s.prefs, c.prefs=c.prefs, co.prefs=co.prefs,

nSlots=c(2,1,1))
res$matching

## End(Not run)

iaa Immediate Acceptance Algorithm (a.k.a. Boston mechanism) for two-
sided matching markets

Description

Finds the optimal assignment of students to colleges in the college admissions problem based on the
Boston mechanism. The algorithmen is also applicable to the stable marriage problem. The option
acceptance="deferred" instead uses the Gale-Shapley (1962) Deferred Acceptance Algorithm
with student offer. The function works with either given or randomly generated preferences.

Usage

iaa(
nStudents = ncol(s.prefs),
nColleges = ncol(c.prefs),
nSlots = rep(1, nColleges),
s.prefs = NULL,
c.prefs = NULL,
acceptance = "immediate",
short_match = TRUE,
seed = NULL

)

http://en.wikipedia.org/wiki/Hospital_resident
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Arguments

nStudents integer indicating the number of students (in the college admissions problem) or
men (in the stable marriage problem) in the market. Defaults to ncol(s.prefs).

nColleges integer indicating the number of colleges (in the college admissions problem) or
women (in the stable marriage problem) in the market. Defaults to ncol(c.prefs).

nSlots vector of length nColleges indicating the number of places (i.e. quota) of each
college. Defaults to rep(1,nColleges) for the marriage problem.

s.prefs matrix of dimension nColleges x nStudents with the jth column containing
student j’s ranking over colleges in decreasing order of preference (i.e. most
preferred first).

c.prefs matrix of dimension nStudents x nColleges with the ith column containing
college i’s ranking over students in decreasing order of preference (i.e. most
preferred first).

acceptance if acceptance="deferred" returns the solution found by the student-proposing
Gale-Shapley deferred acceptance algorithm; if acceptance="immediate" (the
default) returns the solution found by the Boston mechanism.

short_match (Optional) If FALSE then in the returned matching, free capacities will be indi-
cated with 0 entries. If TRUE, free capacities will not be reported in the returned
matching but an additonal data.frame is returned that contains free capacities.
Defaults to TRUE.

seed (Optional) integer setting the state for random number generation.

Value

iaa returns a list with the following elements.

s.prefs student-side preference matrix.

c.prefs college-side preference matrix.

iterations number of interations required to find the stable matching.

matchings edgelist of matches

singles identifier of single (or unmatched) students/men.

Minimum required arguments

iaa requires the following combination of arguments, subject to the matching problem.

nStudents, nColleges Marriage problem with random preferences.

s.prefs, c.prefs Marriage problem with given preferences.

nStudents, nSlots College admissions problem with random preferences.

s.prefs, c.prefs, nSlots College admissions problem with given preferences.

Author(s)

Thilo Klein
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References

Gale, D. and Shapley, L.S. (1962). College admissions and the stability of marriage. The American
Mathematical Monthly, 69(1):9–15.

Kojima, F. and M.U. Unver (2014). The "Boston" school-choice mechanism. Economic Theory,
55(3): 515–544.

Examples

##\dontrun{
## --------------------------------
## --- College admission problem

s.prefs <- matrix(c(1,2,3,
1,2,3,
1,2,3,
2,1,3,
2,1,3),

byrow = FALSE, ncol = 5, nrow = 3); s.prefs
c.prefs <- matrix(c(1,4,2,3,5,

5,2,3,4,1,
1,2,3,4,5),

byrow = FALSE, ncol = 3, nrow = 5); c.prefs
nSlots <- c(2,2,1)

## Boston mechanism
iaa(s.prefs = s.prefs, c.prefs = c.prefs, nSlots = nSlots)$matchings

## Gale-Shapley algorithm
iaa(s.prefs = s.prefs, c.prefs = c.prefs, nSlots = nSlots, acceptance="deferred")$matchings

## Same results for the Gale-Shapley algorithm with hri2() function (but different format)
set.seed(123)
iaa(nStudents=7, nSlots=c(3,3), acceptance="deferred")$matchings
set.seed(123)
hri2(nStudents=7, nSlots=c(3,3))$matchings
##}

khb Karlson-Holm-Breen method for comparing probit coefficients

Description

Significance test for confounding; that is, the difference between regression coefficients from same-
sample nested logit and probit models. The test procedure follows Karlson et al (2012), Section
3.4.

Usage

khb(X, y, z)
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Arguments

X data frame comprising independent variables including confounding variable.

y vector of dependent variable.

z character string giving the name of the confounding variable in X.

Author(s)

Thilo Klein

References

Karlson, K.B., A. Holm and R. Breen (2012). Comparing regression coefficients between same-
sample nested models using logit and probit: A new method. Sociological Methodology, 42(1):286–
313.

Examples

## 1. load results from Klein (2015a)
data(klein15a)

## 2. apply KHB method
with(klein15a$variables, khb(X=X, y=Y, z="eta"))

klein15a MCMC results in Klein (2015a)

Description

MCMC results in Klein (2015a).

Usage

data(klein15a)

Format

A list containing the following elements:

model.list .

coefs .

References

Klein, T. (2015a). Does Anti-Diversification Pay? A One-Sided Matching Model of Microcredit.
Cambridge Working Papers in Economics, #1521.

https://ideas.repec.org/p/cam/camdae/1521.html
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klein15b Results of Monte Carlo Simulations in Klein (2015b)

Description

Results of Monte Carlo Simulations in Klein (2015b) for 40 two-group markets.

Usage

data(klein15b)

Format

A list containing the following elements:

exp.5.5.ols Benchmark study, OLS: coefficient estimates for 40 markets with groups of 5. Data for
all 5 group members is observed.

exp.5.5.ntu Benchmark study, structural model.

exp.6.5.ols Experiment 1, OLS: coefficient estimates for 40 markets with groups of 6. Only Data
for 5 group members is observed.

exp.6.5.ntu Experiment 1, structural model.

exp.6.6.ols Experiment 2, OLS: coefficient estimates for 40 markets with groups of 6. Data for
all 6 group members is observed but only a random sample of 250 of the 922 counterfactual
groups is used in the analysis.

exp.6.6.ntu Experiment 2, structural model.

References

Klein, T. (2015a). Does Anti-Diversification Pay? A One-Sided Matching Model of Microcredit.
Cambridge Working Papers in Economics, #1521.

Klein, T. (2015b). Analysis of stable matchings in R: Package matchingMarkets. Vignette to R
package matchingMarkets, The Comprehensive R Archive Network.

Examples

## Plot of posterior distributions

data(klein15b)

tpe <- c(rep("Benchmark",2), rep("Experiment 1",2), rep("Experiment 2",2))

for(i in seq(1,length(klein15b)-1,2)){
ntu <- klein15b[[i]]
ols <- klein15b[[i+1]]

ntu <- ntu[,colnames(ntu) == "beta.wst.ieq"]
ols <- ols[,colnames(ols) == "beta.wst.ieq"]

https://ideas.repec.org/p/cam/camdae/1521.html
https://cran.r-project.org/package=matchingMarkets
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if(i == 1){
draws <- data.frame(Structural=ntu, OLS=ols, type=tpe[i]) #, stringsAsFactors=FALSE

} else{
draws <- rbind(draws, data.frame(Structural=ntu, OLS=ols, type=tpe[i]))

}
}

library(lattice)
lattice.options(default.theme = standard.theme(color = FALSE))
keys <- list(text=c("Structural model","OLS"), space="top", columns=2, lines=TRUE)
densityplot( ~ Structural + OLS | type, plot.points=FALSE, auto.key=keys,

data = draws, xlab = "coefficient draws", ylab = "density", type = "l",
panel = function(x,...) {

panel.densityplot(x,...)
panel.abline(v=-1, lty=3)

})

## Not run:
## Modes of posterior distributions

## load data
data(klein15b)

## define function to obtain the mode
mode <- function(x){

d <- density(x,bw="SJ")
formatC(round(d$x[which.max(d$y)], 3), format='f', digits=3)

}

## Benchmark study
apply(klein15b$exp.5.5.ntu, 2, mode)
apply(klein15b$exp.5.5.ols, 2, mode)

## Experiment 1
apply(klein15b$exp.6.5.ntu, 2, mode)
apply(klein15b$exp.6.5.ols, 2, mode)

## Experiment 2
apply(klein15b$exp.6.6.ntu, 2, mode)
apply(klein15b$exp.6.6.ols, 2, mode)

## End(Not run)

mce MC Experiments

Description

MC Experiments
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Usage

mce(seed, niter, N, n, m, type, method)

Arguments

seed seed value for Monte Carlo Experiment

niter number of draws in estimation

N group size (population)

n group size (sample)

m number of markets

type type of the MC Experiment. Either group.members for randomly sampled
group members or counterfactual.groups for randomly sampled number of
counterfactual (or feasible) groups in selection equation (capped at limit max.combs=250)

method either group.members or counterfactual.groups

Author(s)

Thilo Klein

Examples

## Not run:
## 1. Set parameters
mciter <- 2 #500
niter <- 10 #400000
nodes <- 4

## 2. Setup parallel backend to use 4 processors
library(foreach); library(doSNOW)
cl <- makeCluster(4); registerDoSNOW(cl)

## 3. Define foreach loop function
mce.add <- function(mciter, niter, N, n, m, type, method){

h <- foreach(i=1:mciter) %dopar% {
library(matchingMarkets)
mce(seed=i,niter, N, n, m, type, method)

}
do.call(rbind, h)

}

## 4. Run siumlations:

## 4-a. Benchmark study
exp.5.5.ols <- mce.add(mciter=mciter, niter=niter, N=5, n=5, m=40,

type="group.members", method="outcome")
exp.5.5.ntu <- mce.add(mciter=mciter, niter=niter, N=5, n=5, m=40,

type="group.members", method="NTU")

## 4-b. Experiment 1: randomly sampled group members
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exp.6.5.ols <- mce.add(mciter=mciter, niter=niter, N=6, n=5, m=40,
type="group.members", method="outcome")

exp.6.5.ntu <- mce.add(mciter=mciter, niter=niter, N=6, n=5, m=40,
type="group.members", method="NTU")

## 4-c. Experiment 2: randomly sampled counterfactual groups
exp.6.6.ols <- mce.add(mciter=mciter, niter=niter, N=6, n=6, m=40,

type="counterfactual.groups", method="outcome")
exp.6.6.ntu <- mce.add(mciter=mciter, niter=niter, N=6, n=6, m=40,

type="counterfactual.groups", method="NTU")

## 5. Stop parallel backend
stopCluster(cl)

## End(Not run)

plp Partitioning Linear Programme for the stable roommates problem

Description

Finds the stable matching in the stable roommates problem with transferable utility. Uses the Parti-
tioning Linear Programme formulated in Quint (1991).

Usage

plp(V = NULL, N = NULL)

Arguments

V valuation matrix of dimension NxN that gives row-players valuation over column
players (or vice versa).

N integer (divisible by 2) that gives the number of players in the market.

Value

plp returns a list with the following items.

Valuation.matrix

input values of V.
Assignment.matrix

upper triangular matrix of dimension NxN with entries of 1 for equilibrium pairs
and 0 otherwise.

Equilibrium.groups

matrix that gives the N/2 equilibrium pairs and equilibrium partners’ mutual
valuations.

Author(s)

Thilo Klein

http://en.wikipedia.org/wiki/Stable_roommates_problem


20 predict.stabit2

References

Quint, T. (1991). Necessary and sufficient conditions for balancedness in partitioning games. Math-
ematical Social Sciences, 22(1):87–91.

Examples

## Roommate problem with 10 players, transferable utility and random preferences:
plp(N=10)

## Roommate problem with 10 players, transferable utility and given preferences:
V <- matrix(rep(1:10, 10), 10, 10)
plp(V=V)

predict.stabit2 Predict method for fitted matching models

Description

Calculate predicted values for matching models fitted with functions stabit and stabit2.

Usage

## S3 method for class 'stabit2'
predict(object, newdata = NULL, ...)

Arguments

object a fitted object of class stabit
newdata optionally, a data frame in which to look for variables with which to predict. If

omitted, the fitted linear predictors or the fitted response values are returned.
... .

Author(s)

Thilo Klein

References

Klein, T. (2015a). Does Anti-Diversification Pay? A One-Sided Matching Model of Microcredit.
Cambridge Working Papers in Economics, #1521.

Examples

## load the results from Klein (2015) paper
data(klein15a)

## predict the latent outcome variable
predict(klein15a)

https://ideas.repec.org/p/cam/camdae/1521.html


rsd 21

rsd Random serial dictatorship mechanism

Description

Implements the random serial dictatorship algorithm algorithm for a fair division of indivisible
objects among individuals. The mechanism takes individuals’ prioirty order as an input or alterna-
tively draws a random permutation of the agents form the uniform distribution. Individuals are then
successively assigned an object in that order (so the first agent in the ordering gets the first pick and
so on).

Usage

rsd(
nIndividuals = ncol(prefs),
nObjects = nrow(prefs),
prefs,
priority,
seed = NULL,
nSlots = rep(1, nObjects)

)

Arguments

nIndividuals integer indicating the number of individuals in the matching problem. Defaults
to ncol(prefs).

nObjects integer indication the number of objects in the matching problem. Defaults to
nrow(prefs).

prefs matrix of dimension nObjects x nIndividuals with the jth column containing
students j’s ranking over the objects in decreasing order of preference (i.e. most
preferred first).

priority (Optional) vector of length nIndividuals indicating the priority of the indi-
viduals in decreasing order (i.e. highest individuals first). If none is given, a
random order is chosen.

seed (Optional) integer setting the state for random number generation. Defaults to
seed = 123.

nSlots (Optional) vector of length nObjects indicating the owners/slots possible/available
for each object. (If nSlots only consists of ones this means that every object can
only have one owner, if the numbers are higher interpreting objects for example
as schools might be more intuitive). Defaults to a vector of length nObjects
filled with ones.

Value

rsd returns a data frame containing the final matching of individuals (ind) to objects (obj).

https://en.wikipedia.org/wiki/Random_serial_dictatorship
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Author(s)

Thilo Klein, Alexander Sauer

Examples

## Generate preference-matrix
prefs <- matrix(c(1,2,3,

3,1,2,
1,3,2),
byrow = FALSE, ncol = 3)

priority <- c(1,2,3)
nSlots <- c(1,1,1)

rsd(prefs = prefs, priority = priority, nSlots = nSlots)

sri All stable matchings in the stable roommates problem with incomplete
lists

Description

Finds all stable matchings (if one exists) in the stable roommates problem with incomplete lists
using the Prosser (2014) constraint encoding based on either given or randomly generated prefer-
ences.

Usage

sri(prefs = NULL, nAgents = NULL, seed = NULL, p.range = NULL)

Arguments

prefs valuation matrix of dimension nAgents x nAgents that gives column-players’
ranking over other players in decreasing order of preference (i.e. most preferred
first).

nAgents integer that gives the number of players in the market.

seed integer setting the state for random number generation.

p.range range of two intergers p.range = c(p.min, p.max), where p.min < p.max. Pro-
duces incomplete preference lists with the length of each player’s list randomly
sampled from the range [p.min, p.max]. Note: interval is always too small
because non-permissible matches are automatically deleted.

Value

sri returns a list with the following items.

prefs agents’ preference list.

matching edgelist of matched pairs, inculding the number of the match (matching).

http://en.wikipedia.org/wiki/Stable_roommates_problem
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Author(s)

Thilo Klein

References

Gusfield, D.M. and R.W. Irving (1989). The Stable Marriage Problem: Structure and Algorithms,
MIT Press.

Prosser, P. (2014). Stable Roommates and Constraint Programming. Lecture Notes in Computer
Science, CPAIOR 2014 Edition. Springer International Publishing, 8451: 15–28.

Irving, R.W. and S. Scott (2007). The stable fixtures problem: A many-to-many extension of stable
roommates. Discrete Applied Mathematics, 155: 2118–2129.

Examples

## Roommate problem with 10 players, given preferences:
prefs <- matrix(rep(1:10, 10), 10, 10)
sri(prefs=prefs)

## Roommate problem with 10 players, random preferences:
sri(nAgents=10, seed=1)

## Roommate problem with no equilibrium matching:
sri(nAgents=10, seed=2)

## Roommate problem with 3 equilibria:
sri(nAgents=10, seed=3)

stabchk Stability-Check

Description

Checks a given two sided matching for blocking pairs.

Usage

stabchk(
matching,
c.prefs,
s.prefs,
nColleges = ncol(c.prefs),
nStudents = ncol(s.prefs)

)
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Arguments

matching data frame or matrix of dimension (min[nColleges, nStudents]) x 2 contain-
ing in column 1 the colleges and in column 2 the students with each row forming
a couple.

c.prefs matrix of dimension nStudents x nColleges with column j containing college
j’th ranking over students in decreasing order of preferences.

s.prefs matrix of dimension nColleges x nStudents with column j containing student
j’th ranking over colleges in decreasing order of preferences.

nColleges integer indicating the number of colleges

nStudents integer indicating the number of students

Value

stabchk returns a data frame with as many rows as blocking pairs were found. Column 1 indicates
the college and column 2 indicate the student of the blocking pairs. Returns NULL if no blocking
pair is found.

Author(s)

Thilo Klein, Alexander Sauer

Examples

## 1-a. Generate preferences for colleges
c.prefs = matrix(c(1,2,3,

3,2,1,
3,2,1),
byrow = FALSE, ncol = 3); c.prefs

## 1-b. Generate preferences for students
s.prefs = matrix(c(1,2,3,

3,2,1,
2,1,3),

byrow = FALSE, ncol = 3);s.prefs

## 1-c. Generate matching
matching = matrix(c(1,2,

2,1,
3,3),

byrow = TRUE, ncol = 2); matching

## 1-d. Check stability
stabchk(matching = matching, c.prefs = c.prefs, s.prefs = s.prefs)

## 2-a. Generate new matching without blocking pairs as a data frame
matching = data.frame('colleges' = c(1,2,3), 'student' = c(1,3,2))
stabchk(matching = matching, c.prefs = c.prefs, s.prefs = s.prefs)

## 3-a. Example with missing values:
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matching <- matrix(c(1,1,2,2,3,3), byrow = FALSE, ncol = 2)
c.prefs <- matrix(c(1,1,3,rep(NA, 6)), byrow = TRUE, ncol = 3)
s.prefs <- matrix(c(2,2,3,rep(NA, 6)), byrow = TRUE, ncol = 3)
stabchk(matching = matching, c.prefs = c.prefs, s.prefs = s.prefs)

stabit Matching model and selection correction for group formation

Description

The function provides a Gibbs sampler for a structural matching model that estimates preferences
and corrects for sample selection bias when the selection process is a one-sided matching game;
that is, group/coalition formation.

The input is individual-level data of all group members from one-sided matching marktes; that is,
from group/coalition formation games.

In a first step, the function generates a model matrix with characteristics of all feasible groups of
the same size as the observed groups in the market.

For example, in the stable roommates problem with n = 4 students {1, 2, 3, 4} sorting into groups
of 2, we have

(
4
2

)
= 6 feasible groups: (1,2)(3,4) (1,3)(2,4) (1,4)(2,3).

In the group formation problem with n = 6 students {1, 2, 3, 4, 5, 6} sorting into groups of 3, we
have

(
6
3

)
= 20 feasible groups. For the same students sorting into groups of sizes 2 and 4, we have(

6
2

)
+
(
6
4

)
= 30 feasible groups.

The structural model consists of a selection and an outcome equation. The Selection Equation
determines which matches are observed (D = 1) and which are not (D = 0).

D = 1[V ∈ Γ]
V = Wα+ η

Here, V is a vector of latent valuations of all feasible matches, ie observed and unobserved, and
1[.] is the Iverson bracket. A match is observed if its match valuation is in the set of valuations Γ
that satisfy the equilibrium condition (see Klein, 2015a). This condition differs for matching games
with transferable and non-transferable utility and can be specified using the method argument. The
match valuation V is a linear function of W , a matrix of characteristics for all feasible groups, and
η, a vector of random errors. α is a paramter vector to be estimated.

The Outcome Equation determines the outcome for observed matches. The dependent variable can
either be continuous or binary, dependent on the value of the binary argument. In the binary case,
the dependent variable R is determined by a threshold rule for the latent variable Y .

R = 1[Y > c]
Y = Xβ + ϵ

Here, Y is a linear function of X , a matrix of characteristics for observed matches, and ϵ, a vector
of random errors. β is a paramter vector to be estimated.

The structural model imposes a linear relationship between the error terms of both equations as
ϵ = δη+ξ, where ξ is a vector of random errors and δ is the covariance paramter to be estimated. If
δ were zero, the marginal distributions of ϵ and η would be independent and the selection problem
would vanish. That is, the observed outcomes would be a random sample from the population of
interest.
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Usage

stabit(
x,
m.id = "m.id",
g.id = "g.id",
R = "R",
selection = NULL,
outcome = NULL,
simulation = "none",
seed = 123,
max.combs = Inf,
method = "NTU",
binary = FALSE,
offsetOut = 0,
offsetSel = 0,
marketFE = FALSE,
censored = 0,
gPrior = FALSE,
dropOnes = FALSE,
interOut = 0,
interSel = 0,
standardize = 0,
niter = 10,
verbose = FALSE

)

Arguments

x data frame with individual-level characteristics of all group members including
market- and group-identifiers.

m.id character string giving the name of the market identifier variable. Defaults to
"m.id".

g.id character string giving the name of the group identifier variable. Defaults to
"g.id".

R dependent variable in outcome equation. Defaults to "R".

selection list containing variables and pertaining operators in the selection equation. The
format is operation = "variable". See the Details and Examples sections.

outcome list containing variables and pertaining operators in the outcome equation. The
format is operation = "variable". See the Details and Examples sections.

simulation should the values of dependent variables in selection and outcome equations be
simulated? Options are "none" for no simulation, "NTU" for non-transferable
utility matching, "TU" for transferable utility or "random" for random matching
of individuals to groups. Simulation settings are (i) all model coefficients set to
alpha=beta=1; (ii) covariance between error terms delta=0.5; (iii) error terms
eta and xi are draws from a standard normal distribution.

seed integer setting the state for random number generation if simulation=TRUE.
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max.combs integer (divisible by two) giving the maximum number of feasible groups to be
used for generating group-level characteristics.

method estimation method to be used. Either "NTU" or "TU" for selection correction us-
ing non-transferable or transferable utility matching as selection rule; "outcome"
for estimation of the outcome equation only; or "model.frame" for no estima-
tion.

binary logical: if TRUE outcome variable is taken to be binary; if FALSE outcome vari-
able is taken to be continuous.

offsetOut vector of integers indicating the indices of columns in X for which coefficients
should be forced to 1. Use 0 for none.

offsetSel vector of integers indicating the indices of columns in W for which coefficients
should be forced to 1. Use 0 for none.

marketFE logical: if TRUE market-level fixed effects are used in outcome equation; if FALSE
no market fixed effects are used.

censored draws of the delta parameter that estimates the covariation between the error
terms in selection and outcome equation are 0:not censored, 1:censored from
below, 2:censored from above.

gPrior logical: if TRUE the g-prior (Zellner, 1986) is used for the variance-covariance
matrix.

dropOnes logical: if TRUE one-group-markets are exluded from estimation.

interOut two-colum matrix indicating the indices of columns in X that should be inter-
acted in estimation. Use 0 for none.

interSel two-colum matrix indicating the indices of columns in W that should be inter-
acted in estimation. Use 0 for none.

standardize numeric: if standardize>0 the independent variables will be standardized by
dividing by standardize times their standard deviation. Defaults to no stan-
dardization standardize=0.

niter number of iterations to use for the Gibbs sampler.

verbose .

Details

Operators for variable transformations in selection and outcome arguments.

add sum over all group members and divide by group size.

int sum over all possible two-way interactions x ∗ y of group members and divide by the number
of those, given by choose(n,2).

ieq sum over all possible two-way equality assertions 1[x = y] and divide by the number of those.

ive sum over all possible two-way interactions of vectors of variables of group members and divide
by number of those.

inv ...

dst sum over all possible two-way distances between players and divide by number of those, where
distance is defined as e−|x−y|.
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Author(s)

Thilo Klein

References

Klein, T. (2015a). Does Anti-Diversification Pay? A One-Sided Matching Model of Microcredit.
Cambridge Working Papers in Economics, #1521.

Zellner, A. (1986). On assessing prior distributions and Bayesian regression analysis with g-prior
distributions, volume 6, pages 233–243. North-Holland, Amsterdam.

Examples

## Not run:
## --- SIMULATED EXAMPLE ---

## 1. Simulate one-sided matching data for 200 markets (m=200) with 2 groups
## per market (gpm=2) and 5 individuals per group (ind=5). True parameters
## in selection equation is wst=1, in outcome equation wst=0.

## 1-a. Simulate individual-level, independent variables
idata <- stabsim(m=200, ind=5, seed=123, gpm=2)
head(idata)

## 1-b. Simulate group-level variables
mdata <- stabit(x=idata, simulation="NTU", method="model.frame",
selection = list(add="wst"), outcome = list(add="wst"), verbose=FALSE)
head(mdata$OUT)
head(mdata$SEL)

## 2. Bias from sorting

## 2-a. Naive OLS estimation
lm(R ~ wst.add, data=mdata$OUT)$coefficients

## 2-b. epsilon is correlated with independent variables
with(mdata$OUT, cor(epsilon, wst.add))

## 2-c. but xi is uncorrelated with independent variables
with(mdata$OUT, cor(xi, wst.add))

## 3. Correction of sorting bias when valuations V are observed

## 3-a. 1st stage: obtain fitted value for eta
lm.sel <- lm(V ~ -1 + wst.add, data=mdata$SEL)
lm.sel$coefficients

eta <- lm.sel$resid[mdata$SEL$D==1]

## 3-b. 2nd stage: control for eta
lm(R ~ wst.add + eta, data=mdata$OUT)$coefficients

https://ideas.repec.org/p/cam/camdae/1521.html
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## 4. Run Gibbs sampler
fit1 <- stabit(x=idata, method="NTU", simulation="NTU", censored=1,

selection = list(add="wst"), outcome = list(add="wst"),
niter=2000, verbose=FALSE)

## 5. Coefficient table
summary(fit1)

## 6. Plot MCMC draws for coefficients
plot(fit1)

## --- REPLICATION, Klein (2015a) ---

## 1. Load data
data(baac00); head(baac00)

## 2. Run Gibbs sampler
klein15a <- stabit(x=baac00, selection = list(inv="pi",ieq="wst"),

outcome = list(add="pi",inv="pi",ieq="wst",
add=c("loan_size","loan_size2","lngroup_agei")), offsetOut=1,
method="NTU", binary=TRUE, gPrior=TRUE, marketFE=TRUE, niter=800000)

## 3. Marginal effects
summary(klein15a, mfx=TRUE)

## 4. Plot MCMC draws for coefficients
plot(klein15a)

## End(Not run)

stabit2 Matching model and selection correction for college admissions

Description

The function provides a Gibbs sampler for a structural matching model that estimates preferences
and corrects for sample selection bias when the selection process is a two-sided matching game;
i.e., a matching of students to colleges.

The structural model consists of a selection and an outcome equation. The Selection Equation
determines which matches are observed (D = 1) and which are not (D = 0).

D = 1[V ∈ Γ]
V = Wβ + η

Here, V is a vector of latent valuations of all feasible matches, ie observed and unobserved, and 1[.]
is the Iverson bracket. A match is observed if its match valuation is in the set of valuations Γ that
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satisfy the equilibrium condition (see Sorensen, 2007). The match valuation V is a linear function
of W , a matrix of characteristics for all feasible matches, and η, a vector of random errors. β is a
paramter vector to be estimated.

The Outcome Equation determines the outcome for observed matches. The dependent variable can
either be continuous or binary, dependent on the value of the binary argument. In the binary case,
the dependent variable R is determined by a threshold rule for the latent variable Y .

R = 1[Y > c]
Y = Xα+ ϵ

Here, Y is a linear function of X , a matrix of characteristics for observed matches, and ϵ, a vector
of random errors. α is a paramter vector to be estimated.

The structural model imposes a linear relationship between the error terms of both equations as
ϵ = κη + ν, where ν is a vector of random errors and κ is the covariance paramter to be estimated.
If κ were zero, the marginal distributions of ϵ and η would be independent and the selection problem
would vanish. That is, the observed outcomes would be a random sample from the population of
interest.

Usage

stabit2(
OUT = NULL,
SEL = NULL,
colleges = NULL,
students = NULL,
outcome = NULL,
selection,
binary = FALSE,
niter,
gPrior = FALSE,
censored = 1,
thin = 1,
nCores = max(1, detectCores() - 1),
...

)

Arguments

OUT data frame with characteristics of all observed matches, including market iden-
tifier m.id, college identifier c.id and student identifier s.id.

SEL optional: data frame with characteristics of all observed and unobserved matches,
including market identifier m.id, college identifier c.id and student identifier
s.id.

colleges character vector of variable names for college characteristics. These variables
carry the same value for any college.

students character vector of variable names for student characteristics. These variables
carry the same value for any student.

outcome formula for match outcomes.
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selection formula for match valuations.

binary logical: if TRUE outcome variable is taken to be binary; if FALSE outcome vari-
able is taken to be continuous.

niter number of iterations to use for the Gibbs sampler.

gPrior logical: if TRUE the g-prior (Zellner, 1986) is used for the variance-covariance
matrix. (Not yet implemented)

censored draws of the kappa parameter that estimates the covariation between the error
terms in selection and outcome equation are 0:not censored, 1:censored from
below, 2:censored from above.

thin integer indicating the level of thinning in the MCMC draws. The default thin=1
saves every draw, thin=2 every second, etc.

nCores number of cores to be used in parallel Gibbs sampling.

... .

Author(s)

Thilo Klein

References

Sorensen, M. (2007). How Smart is Smart Money? A Two-Sided Matching Model of Venture
Capital. Journal of Finance, 62 (6): 2725-2762.

Examples

## Not run:
## --- SIMULATED EXAMPLE ---

## 1. Simulate two-sided matching data for 20 markets (m=20) with 100 students
## (nStudents=100) per market and 20 colleges with quotas of 5 students, each
## (nSlots=rep(5,20)). True parameters in selection and outcome equations are
## all equal to 1.

xdata <- stabsim2(m=20, nStudents=100, nSlots=rep(5,20), verbose=FALSE,
colleges = "c1", students = "s1",
outcome = ~ c1:s1 + eta + nu,
selection = ~ -1 + c1:s1 + eta

)
head(xdata$OUT)

## 2. Correction for sorting bias when match valuations V are observed

## 2-a. Bias from sorting
lm1 <- lm(y ~ c1:s1, data=xdata$OUT)
summary(lm1)

## 2-b. Cause of the bias
with(xdata$OUT, cor(c1*s1, eta))
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## 2-c. Correction for sorting bias
lm2a <- lm(V ~ -1 + c1:s1, data=xdata$SEL); summary(lm2a)
etahat <- lm2a$residuals[xdata$SEL$D==1]

lm2b <- lm(y ~ c1:s1 + etahat, data=xdata$OUT)
summary(lm2b)

## 3. Correction for sorting bias when match valuations V are unobserved

## 3-a. Run Gibbs sampler (when SEL is given)
fit2 <- stabit2(OUT = xdata$OUT,

SEL = xdata$SEL,
outcome = y ~ c1:s1,
selection = ~ -1 + c1:s1,
niter=1000

)

## 3-b. Alternatively: Run Gibbs sampler (when SEL is not given)
fit2 <- stabit2(OUT = xdata$OUT,

colleges = "c1",
students = "s1",
outcome = y ~ c1:s1,
selection = ~ -1 + c1:s1,
niter=1000

)

## 4. Implemented methods

## 4-a. Get coefficients
fit2

## 4-b. Coefficient table
summary(fit2)

## 4-c. Get marginal effects
summary(fit2, mfx=TRUE)

## 4-d. Also try the following functions
#coef(fit2)
#fitted(fit2)
#residuals(fit2)
#predict(fit2, newdata=NULL)

## 5. Plot MCMC draws for coefficients
plot(fit2)

## End(Not run)
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stabsim Simulated data for group formation problem

Description

Simulate individual-level data for one-sided matching markets.

Usage

stabsim(m, ind, seed = 123, singles = NULL, gpm = 2)

Arguments

m integer indicating the number of markets to be simulated.

ind integer (or vector) indicating the number of individuals per group.

seed integer setting the state for random number generation. Defaults to set.seed(123).

singles integer giving the number of one-group markets.

gpm integer giving the number of groups per market.

Value

stabsim returns a data frame with the randomly generated variables mimicking those in dataset
baac00.

m.id categorical: market identifier.

g.id categorical: group identifier.

wst binary: indicator taking the value 1 if last year was worse than the year before;
0 otherwise.

R NA: group outcome is not simulated. It can be obtained using the simulation
argument in function stabit.

Author(s)

Thilo Klein

Examples

## Coalitions [gpm := 2 !]
## Simulate one-sided matching data for 4 markets (m=4) with 2 groups
## per market (gpm=2) and 2 to 4 individuals per group (ind=2:4)
idata <- stabsim(m=4, ind=2:4, seed=124, singles=2, gpm=2)

## Rommmates [ind := 2 !]
## Simulate one-sided matching data for 3 markets (m=3) with 3 groups
## per market (gpm=3) and 2 individuals per group (ind=2)
idata <- stabsim(m=3, ind=2, seed=124, gpm=3)
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stabsim2 Simulated data for college admissions problem

Description

Simulate data for two-sided matching markets. In the simulation for the Sorensen (2007) model
with one selection equation, an equal sharing rule of λ = 0.5 is used.

Usage

stabsim2(
m,
nStudents,
nColleges = length(nSlots),
nSlots,
colleges,
students,
outcome,
selection,
binary = FALSE,
seed = 123,
verbose = TRUE

)

Arguments

m integer indicating the number of markets to be simulated.

nStudents integer indicating the number of students per market.

nColleges integer indicating the number of colleges per market.

nSlots vector of length nColleges indicating the number of places at each college, i.e.
the college’s quota.

colleges character vector of variable names for college characteristics. These variables
carry the same value for any college.

students character vector of variable names for student characteristics. These variables
carry the same value for any student.

outcome formula for match outcomes.

selection formula for match valuations.

binary logical: if TRUE outcome variable is binary; if FALSE outcome variable is contin-
uous.

seed integer setting the state for random number generation. Defaults to set.seed(123).

verbose .



ttc 35

Value

stabsim2 returns a list with the following items.

OUT

SEL

SELc

SELs

Author(s)

Thilo Klein

Examples

## Simulate two-sided matching data for 2 markets (m=2) with 10 students
## (nStudents=10) per market and 3 colleges (nColleges=3) with quotas of
## 2, 3, and 5 students, respectively.

xdata <- stabsim2(m=2, nStudents=10, nSlots=c(2,3,5), verbose=FALSE,
colleges = "c1", students = "s1",
outcome = ~ c1:s1 + eta + nu,
selection = ~ -1 + c1:s1 + eta

)
head(xdata$OUT)
head(xdata$SEL)

ttc Top-Trading-Cycles Algorithm with existing tenants

Description

Implements an algorithm for the house allocation problem proposed by Abdulkadiroglu and Sonmez
(1999) for a matching problem in which there are both vacant houses and existing tenants.

Usage

ttc(
nStudents = ncol(s.prefs),
nHouses = length(houses),
s.prefs,
houses,
priority = NULL,
seed = NULL

)

https://en.wikipedia.org/wiki/Top_trading_cycle
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Arguments

nStudents integer indicating the number of students. Defaults to ncol(s.prefs).

nHouses integer indicating the number of houses. Defaults to length(houses).

s.prefs matrix of dimension nHouses x nStudents with column j containing student
jth ranking over houses in decreasing order of preferences (i.e. most preferred
first).

houses vector of length nHouses which represents the occupation of the houses. Entry
in k contains j if student j is living in house k and NA if house k is vacant.

priority (Optional) vector of length nStudents. Gives the prioirity ordering of the stu-
dents in the search for cycles (Do not confuse it with the preferences!), if nothing
is specified a random ordering is chosen.

seed (Optional) integer setting the state for random number generation. Defaults to
seed = NULL

Value

ttc returns a data frame of the matching of students (int) to houses (obj) for the house allocation
problem based on the Top-Trading-Cycles algorithm.

Author(s)

Thilo Klein, Alexander Sauer

References

Abdulkadiroglu, A. and T. Sonmez (1999). House Allocation with Existing Tenants. Journal of
Economic Theory, 88 (2): 233-260.

Shapley, L. and H. Scarf (1974). On Cores and Indivisibility. Journal of Mathematical Economics,
1(1): 23-37.

Examples

##\dontrun{
## 1-a. Generate matrix of individuals' preference rankings over objects,
## a.k.a. Rank Order Lists (ROL).
s.prefs <- matrix(c(3,2,4,1, # ROL of student 1

3,5,6, NA,
3,1, NA,NA,
2,5,6,4,
1,3,2,NA,
2,4,5,6), nrow = 4, ncol = 6, byrow = FALSE); s.prefs

## 1-b. Generate vector of house occupation objects ('obj') and their owners ('ind')
(houses <- 1:6)

## 1-c. Find assignment based on TTC algorithm
ttc(s.prefs = s.prefs, houses = houses, nHouses = 6, priority = 1:6)
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## 2-a.Compare the example in the paper Abdulkadiroglu et al. (1999)
## on page 246-248 (section 5.1 An Example):
## generate matrix of students' preference rankings over houses, a.k.a. Rank Order Lists (ROL)
s.prefs <- matrix(c(2,6,5,1,4,3,7,NA,

7,1,6,5,4,3,2,NA,
2,1,4,7,3,6,5,NA,
2,4,3,6,1,7,5,NA,
4,3,7,1,2,5,6,NA), byrow = FALSE, ncol= 5); s.prefs

## 2-b. Generate house occupation, so student 1 lives in house 1, ..., student 4 lives in house 4
## and the other houses are vacant.
houses <- c(1,2,3,4,NA,NA,NA,NA); houses

## 2-c. Generate priority ordering
priority <- 1:5

## 2-d. Find assigment
ttc(s.prefs = s.prefs, houses = houses, priority = priority)
##}

ttc2 Top-Trading-Cycles Algorithm for a two sided matching problem

Description

Implements the school matching algorithm proposed in Abdulkadiroglu and Sonmez (2003) for
a matching problem in which both sides have preferences. Missing preferences are handled in
the following ways: Suppose that a student only ranked colleges that are already matched to other
students. This student is removed from the matching process and a list with all unmatchable students
is printed. If full_return is set to TRUE, a vector with this students is returned as well. Now
suppose during the matching process a student points to a college that still has capacities but does
not rank any more students. We assume now that the college is indifferent over all other students
(so we do not allow for free capacieties) and we match the student who wants to go there to the
college.

Usage

ttc2(
nStudents = ncol(s.prefs),
nColleges = ncol(c.prefs),
s.prefs = NULL,
c.prefs = NULL,
nSlots = NULL,
priority = NULL,
seed = NULL,
full_return = FALSE

)
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Arguments

nStudents integer indicating the number of students in the matching problem. Defaults to
ncol(s.prefs).

nColleges integer indicating the number of colleges in the matching problem. Defaults to
ncol(c.prefs).

s.prefs matrix of dimension nColleges x nStudents with the jth column containing
student j’s ranking over colleges in decreasing order of preference (i.e. most
preferred first).

c.prefs matrix of dimension nStudents x nColleges with the ith column containing
college i’s ranking over students in decreasing order of preference (i.e. most
preferred first).

nSlots vector of length nColleges indicating the number of places (i.e. quota) of each
college.

priority (Optional) vector of length nStudents. Gives the prioirity ordering of the stu-
dents in the search for cycles (Do not confuse it with the preferences!), if nothing
is specified a random ordering is chosen.

seed (Optional) integer setting the state for random number generation. Defaults to
seed = NULL

full_return (Optinal) If TRUE the return value is a list with the matching, the remaining
seats and the unmatchable students is returned. Defaults to FALSE and only the
matching is returned.

Value

ttc2 returns a data frame of the matching of students (ind) to colleges (obj) for the school market
problem based on the Top-Trading-Cycles algorithm.

Author(s)

Thilo Klein, Alexander Sauer

References

Abdulkadiroglu, A. and T. Sonmez (2003). School Choice: A Mechanism Design Approach. Amer-
ican Economic Review, 93 (3): 729-747.

Examples

##\dontrun{
## 1-a. Compare example from the Abdulkadiroglu et al. (2003) (in the Appendix, page 742-744)
## 1-b. Generate matrix of students' preference rankings over schools, a.k.a. Rank Order Lists (ROL)
s.prefs <- matrix(c(

2,1,3,4,
1,2,3,4,
3,2,1,4,
3,4,1,2,
1,3,4,2,
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4,1,2,3,
1,2,3,4,
1,2,4,3),
byrow = FALSE, ncol = 8); s.prefs

## 1-c. Generate matrix of schools' preference rankings over students, a.k.a. Rank Order Lists (ROL)
c.prefs <- matrix(c(

1,2,3,4,5,6,7,8,
3,5,4,8,7,2,1,6,
5,3,1,7,2,8,6,4,
6,8,7,4,2,3,5,1),
byrow = FALSE, ncol = 4); c.prefs

## 1-d. Generate capacities
nSlots <- c(2,2,3,3)

## 1-e. Find assignment based on TTC algorithm
ttc2(s.prefs = s.prefs, c.prefs = c.prefs, nSlots = nSlots)

## 2-a. Generate college preferences with college 1 only ranking student 1
c.prefs <- matrix(c(

1,rep(NA,7),
3,5,4,8,7,2,1,6,
5,3,1,7,2,8,6,4,
6,8,7,4,2,3,5,1),
byrow = FALSE, ncol = 4); c.prefs

## 2-b. Find assignment based on TTC algorithm
ttc2(s.prefs = s.prefs, c.prefs = c.prefs, nSlots = nSlots, priority = 1:8)

## If all schools have the same preferences the two sided ttc and the serial dictator yield
## the same outcome if the preferences are taken to be the prioirty order for the serial dictator

# Preferences are the same for all schools:
c.prefs <- matrix(c(

5,3,1,7,2,8,6,4,
5,3,1,7,2,8,6,4,
5,3,1,7,2,8,6,4,
5,3,1,7,2,8,6,4),
byrow = FALSE, ncol = 4)

priority <- c.prefs[,1]

match_ttc <- ttc2(s.prefs = s.prefs, c.prefs = c.prefs, nSlots = nSlots); match_ttc
match_sd <- rsd(prefs = s.prefs, priority = priority, nSlots = nSlots); match_sd
all(match_ttc == match_sd)
##}

ttcc Top-Trading-Cycles and Chains Algorithm
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Description

Implements the Top Trading Cycle and Chains algorithm proposed by Roth et al. (2004) for the
kidney exchange problem. The algorithm requires a rule to determine which chain will be used if
there is more than one possibility. The chosen rule is to search for the longest chain and remove it
from the problem (even the first kidney which was unassigned).

Usage

ttcc(nPatients = ncol(prefs), prefs, priority = NULL, seed = NULL)

Arguments

nPatients integer indicating the number of patient/donor-pairs in the matching problem.
Defaults to ncol(prefs).

prefs matrix of dimension (nPatients + 1) x nPatients with column j containg pa-
tients jth ranking over kidneys in decreasing order of preferences (i.e. most
preferred first). An entry with value (nPatients +1) indicates that the patient
prefers the waiting list to all kidney below in his ranking (therefore they do not
matter and can be neglected/NA).

priority (Optional) vector of length nStudents. Gives the prioirity ordering of the stu-
dents in the search for cycles (Do not confuse it with the preferences!), if nothing
is specified a random ordering is chosen.

seed (Optional) integer setting the state for random number generation. Defaults to
seed = NULL

Value

ttcc returns a list with the matching and a vector containing the patients who are assigned to
the waiting list. The matching comprises a data frame of the operations to be performed between
patient-donor pairs (ind-obj).

Author(s)

Thilo Klein, Alexander Sauer

References

Roth, A.; T. Sonmez; U. Unver (2004). Kidney Exchange. Quarterly Journal of Economics, 119
(2): 457-488.

Examples

##\dontrun{
## Compare Example 1 from Roth et al. (2004) on page 469 - 475
## generate matrix of patients' preference rankings over kidneys, a.k.a. Rank Order Lists (ROL)

prefs <- matrix(c( 9,10, 1,NA,NA,NA,NA,
11, 3, 5, 6, 2,NA,NA,
2, 4, 5, 6, 7, 8,13,
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5, 9, 1, 8,10, 3,13,
3, 7,11, 4, 5,NA,NA,
3, 5, 8, 6,NA,NA,NA,
6, 1, 3, 9,10, 1,13,
6, 4,11, 2, 3, 8,NA,
3,11,13,NA,NA,NA,NA,
11, 1, 4, 5, 6, 7,13,
3, 6, 5,11,NA,NA,NA,
11, 3, 9, 8,10,12,NA),

byrow = FALSE, ncol = 12); prefs
priority <- 1:12
ttcc(prefs = prefs, priority = priority)
## The final matching differs slightly because in Round 3 another chain is chosen due to a different
## decision rule (compare Figure 3, p472. Here W1 instead of W2 is chosen)
##}

xlogit.data data.frame for exploded logit model

Description

shape a data.frame in a suitable form for the use of the exploded logit with the mlogit function in
package mlogit.

Usage

xlogit.data(
data,
choice,
shape = c("wide", "long"),
varying = NULL,
sep = ".",
alt.var = NULL,
chid.var = NULL,
alt.levels = NULL,
id.var = NULL,
opposite = NULL,
drop.index = FALSE,
ranked = FALSE,
...

)

Arguments

data a data.frame

choice the variable indicating the choice made: it can be either a logical vector, a nu-
merical vector with 0 where the alternative is not chosen, a factor with level
’yes’ when the alternative is chosen
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shape the shape of the data.frame: whether long if each row is an alternative or wide if
each row is an observation

varying the indexes of the variables that are alternative specific

sep the seperator of the variable name and the alternative name (only relevant for a
wide data.frame)

alt.var the name of the variable that contains the alternative index (for a long data.frame
only) or the name under which the alternative index will be stored (the default
name is alt)

chid.var the name of the variable that contains the choice index or the name under which
the choice index will be stored

alt.levels the name of the alternatives: if null, for a wide data.frame, they are guessed from
the variable names and the choice variable (both should be the same), for a long
data.frame, they are guessed from the alt.var argument

id.var the name of the variable that contains the individual index if any

opposite returns the opposite of the specified variables

drop.index should the index variables be dropped from the data.frame

ranked a logical value which is true if the response is a rank

... further arguments passed to reshape

Value

xlogit.data returns a mlogit.data object, which is a data.frame in long format, i.e. one line for
each alternative. It has a index attribute, which is a data.frame that contains the index of the choice
made (’chid’), the index of the alternative (’alt’) and, if any, the index of the individual (’id’). The
choice variable is a boolean which indicates the choice made. This function use reshape if the
data.frame is in wide format.

Author(s)

Thilo Klein

Examples

## Not run:
## Game2 is a data.frame in long format for which the response is a
## ranking variable (see example in package mlogit, function mlogit.data)

## --- 1. baseline case (equivalent to mlogit package)

## load data
data("Game2", package = "mlogit")
head(Game2, 13)

## transform data
G <- xlogit.data(Game2, shape = "long", choice = "ch",

alt.var = "platform", ranked = TRUE)
head(G, 30)
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## --- 2. handle missing values

## introduce NAs
Game2$ch[Game2$ch != 1] <- NA

## transform data
G <- xlogit.data(Game2, shape = "long", choice = "ch", alt.var = "platform", ranked = TRUE)
head(G, 30)

## --- 3. handle varying choice sets

## drop choice options
Game2 <- Game2[-c(7:8),]

## transform data
G <- xlogit.data(Game2, shape = "long", choice = "ch", alt.var = "platform", ranked = TRUE)
head(G, 30)

## --- 4. run models
summary(mlogit::mlogit(ch ~ own | -1 + hours + age, G, reflevel = "PC"))
summary(mlogit::mlogit(ch ~ 0 | -1 + age | own, G))
summary(mlogit::mlogit(ch ~ 0 | -1 + age, G))

## End(Not run)
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